

Lesson 13

Additional Material:

Staging for Residents, Nurses, and other Allied Health Personnel

Learning Objectives

- Introduce the concept and history of stage
- Recognize the reason for assigning stage
- Understand the various uses of staging: patient care, research, surveillance
- Understand stage classification based on different points in time of a patient's care
- Learn the components of stage
- Appreciate the general guidelines

Introduction

What is Staging

- Staging is a common language
 - Developed by medical professionals
 - Used to communicate information about a disease to others
- Staging is designed to
 - Aid in the planning of treatment
 - Give some indication of prognosis
 - Assist in evaluation of the results of treatment
 - Facilitate the exchange of information
 - Contribute to the continuing investigation of cancer
 - Support cancer control activities

History of Staging

- Concept of describing disease by stage or extent of the disease
 - Introduced in 1929 by League of Nations' World Health Organization
 - TNM introduced by Pierre Denoix in France in 1940's

Globally accepted method of describing extent of cancer is TNM

Disease Process of Cancer

Theory of cancer growth or natural history

- Cancer originates in a single cell
- Cell continues to divide and grow
 - In organ of origin
 - Spreads to adjacent tissue or regional node drainage areas
 - Spreads to distant organs or structures
- Cancer spreads
 - From organ of origin through bloodstream or lymphatics into distant organs
 - Without involving adjacent organs and regional nodes

Disease Process of Cancer

- Many cancers go through a matured course
 - Advancing in tumor size or involvement
 - To regional nodal involvement
 - Eventually to distant metastasis

- Small tumors can metastasize
 - First sign of cancer is metastatic disease

TNM Stage Process

Determine timeframe for stage assignment

- At time of diagnostic workup clinical
- After surgical resection pathological

Assign categories: T, N, M, others

- Primary tumor
- Regional nodes
- Distant metastasis

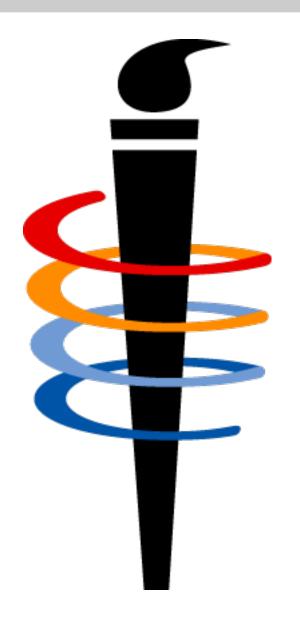
Assign stage group that contains those categories

- (
- | |V

TNM Stage Structure

- Stage groups are 0, I, II, III, and IV
- Groups consist of detailed anatomic categories
 - Local tumor extent, spread from organ/site of origin (primary site) T category
 - Involvement of regional lymph nodes N category
 - Distant metastatic spread M category
- Groups increasingly use non-anatomic factors
 - Additional prognostic information
 - Potentially predict value of specific therapies

TNM Stage by Type of Cancer



- Definition of each category depends on
 - Site of cancer
 - Histology of cancer
- Definitions for breast T, N, M are not the same as those for colon, prostate, and other sites

- AJCC Cancer Staging System has chapters/protocols for
 - Each major organ or site of cancer
 - Histology specific such as separate chapters/protocols for Merkel Cell Carcinoma of the skin and Melanoma of the skin

Staging Systems Currently in Use

Staging Systems

- Two main staging systems in use
 - AJCC TNM
 - Shared with Union for International Cancer Control (UICC)
 - Used throughout the world to describe cancer and help make treatment decisions
 - Summary Stage
 - Used for tracking cancer data for epidemiologic purposes

Each serves a different purpose

AJCC Stage

- Features
 - Provides more detailed information
 - Adds in assigning stage at different points in patient's care
 - Allows analysis of cases at the same point in their care
 - Ensures comparison of cases at similar times
- Different points in time of the patient's care are:
 - Clinical
 - Pathological
 - Posttherapy
 - Retreatment
 - Autopsy

AJCC Stage

- Meets decision making needs of clinicians
 - Incorporated in most diagnostic and treatment guidelines
 - Choose appropriate treatment methods
 - Evaluation of treatment results
- Revised as medical science progresses
- Changes when data analysis proves it is necessary
 - Provides forward flexibility and clinical utility
 - Choosing treatment and estimating prognosis for individual cancer cases

AJCC Stage

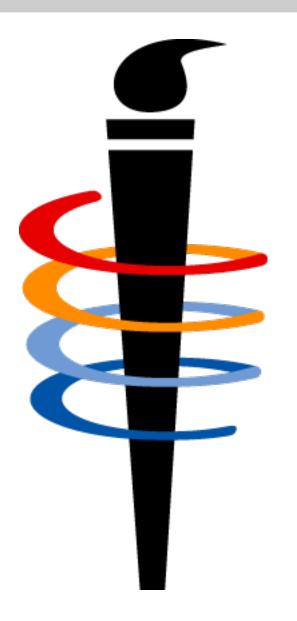
- AJCC Cancer Staging Manual/System editions/versions
 - New editions developed when significant changes warrant it
 - Each edition is used for specific years, Jan 1 Dec 31

Edition	Publication Date	Effective for Cancers Diagnosed
1	1977	1978-1983
2	1983	1984-1988
3	1988	1989-1992
4	1992	1993-1997
5	1997	1998-2002
6	2002	2003-2009
7	2009	2010-2017
8*	2016	2018-
Version 9*	2020+	2021-

^{*}Annual rolling updates to gradually replace manual edition

Summary Stage

- Features
 - Broad categories that rarely change over time
 - Provides a simple grouping with longitudinal stability
 - Mainly used by population registries
- Consists of
 - In situ
 - Localized
 - Regional
 - Regional extension
 - Regional nodes
 - · Regional both extension and nodes
 - Distant
- Less complex than other systems
 - Developed for epidemiologists who want some information
 - Do not need more detailed information


Summary Stage

- Useful when a series of cases is small
 - Only general categories produce enough data for meaningful analysis

- Only captures data once
 - Put together best information from diagnostic workup and pathological exam of resected specimens

Purpose of Staging

Purpose of Staging – Patient Care

- Adequately assess extent of cancer in order to treat in most appropriate manner
- Understanding extent of disease assists the physician in determining treatment to
 - Cure the disease
 - Decrease the tumor burden
 - Relieve symptoms
- Allows clear communication with the patient and other physicians

Purpose of Staging – Patient Care

- Staging used to indicate prognosis
 - Data from historical sources provide estimate of expected survival rate for the patient
 - Determines prognosis and quality of survival along with
 - Histology
 - Tumor grade
 - Age
 - Sex
 - Race
 - Efficacy of therapy

Purpose of Staging – Quality Improvement

- Staging provides a means of comparing local institutional experience with national data
 - Used to compare treatment results based on common criteria
 - Staging expedites exchange of data and assists in continuing research
 - Health information record is primary source of documentation for staging

Purpose of Staging – Research

- Research types
 - Clinical
 - Epidemiologic
 - Health services

- Purpose of research
 - Evaluate cause and effect
 - Evaluate new diagnostic tests and procedures
 - Monitor efficacy of treatment modalities

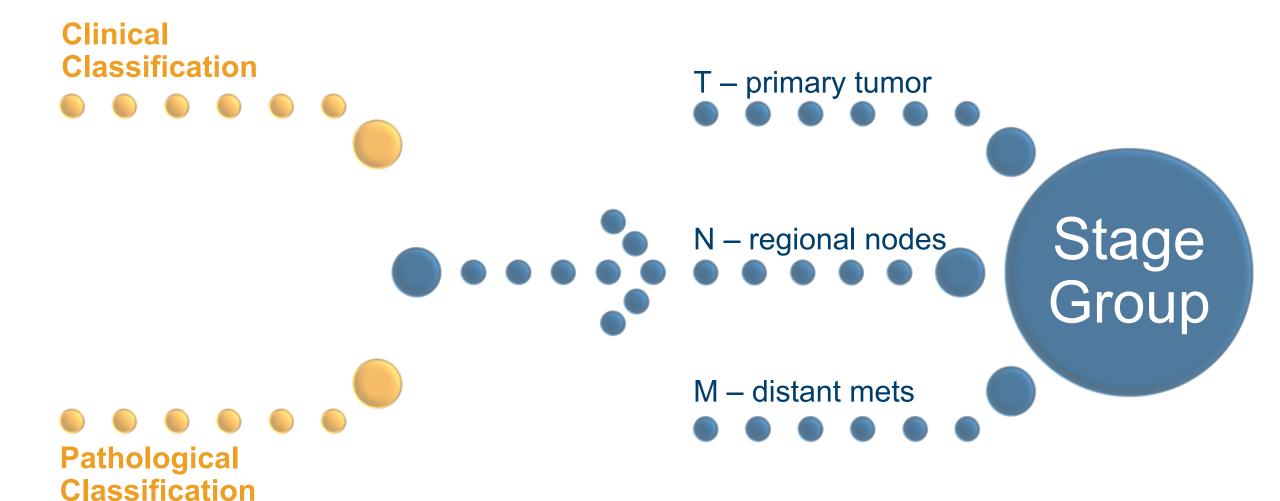
Purpose of Staging – Research

- Comparative effectiveness research for cancer
 - Identify new and emerging clinical interventions
 - Review and synthesize current medical research
 - Identify gaps between existing medical research and the needs of clinical practice
 - Promote and generate new scientific evidence and analytic tools
 - Train and develop clinical researchers
 - Translate and disseminate research findings to diverse stakeholders
 - Reach out to stakeholders via a citizens forum

Purpose of Staging – Surveillance

- Population surveillance
 - Cancer incidence trends over time
 - Cancer diagnosed at early or late stages
 - Show cancer patterns in various populations
 - Guide planning and evaluation of cancer control programs
 - Mortality information

Purpose of Staging – Surveillance



- Public health information available to
 - Identify underserved communities
 - Determine need for screening
 - Determine need for awareness campaigns
 - Identify access to care issues
 - Maximize effectiveness of limited funds
 - Help set priorities for allocating health resources

Stage Classifications (Points in Time for Patient Care)

Stage Classifications

- Stage defined at a number of points in patient care
 - Clinical before any treatment c
 - Pathological based on findings and pathology at time of surgery p
 - Posttherapy after neoadjuvant therapy y, used as yc or yp
 - Retreatment recurrence after disease free interval r
 - Autopsy unsuspected prior to death, incidental finding a
- Clinical and pathological are the most commonly used

Clinical Stage Classification

- Clinical classification uses diagnostic workup
 - History
 - Physical examination
 - Imaging
 - Endoscopy
 - Biopsy of primary site
 - Biopsy of single node or sentinel nodes as part of diagnostic workup
 - Surgical exploration
 - Other relevant examinations
- cT1 cN0 cM0 or T1N0M0, Clinical Stage I

Clinical Stage Classification

- Timing rule for clinical staging includes
 - Any information about extent of cancer before initiation of definitive treatment
 - Surgery
 - Systemic therapy
 - Radiation therapy
 - Active surveillance
 - Palliative care
 - Or within four months after date of diagnosis
 - Whichever is shorter
 - Has NOT clearly progressed during that time

Clinical Stage Classification

- Need for clinical stage clearly identified
 - Monitoring of appropriateness of treatment
 - Treatment based on clinical stage
 - Treatment guidelines assess appropriateness
 - Only point in time where all cases can be compared
 - Clinical stage takes place prior to treatment
 - All cases can be compared regardless of treatment
 - Not all patients have surgery and Pathological Stage
 - By staging at diagnosis, the validity of epidemiological analysis, screening, analysis of treatment outcomes and proper healthcare planning is ensured

Pathological Stage Classification

- Pathological classification based on
 - Information acquired before treatment (clinical stage) supplemented and modified by
 - Evidence acquired during and from surgery (surgical observations)
 - Particularly from pathological examination of resected tissues
 - Need sufficient tissue resected, criteria varies by chapter
- pT1 pN0 cM1 Pathological Stage IV

Pathological Stage Classification

- Timing rule for pathological staging includes
 - Any information obtained about extent of cancer through completion of definitive surgery in first course treatment
 - Or within four months after date of diagnosis
 - Whichever is longer
 - No systemic or radiation therapy initiated
 - Has not clearly progressed during that time

Pathological Stage Classification

- Need for pathological stage clearly identified
 - Used to determine further postoperative therapy
 - Estimate prognosis and survival for individual patient
 - Monitoring of outcomes and survival
 - By stage group
 - By treatment choices compare efficacy of treatment

Stage Classification Rules

- Stage classification only includes information from that point in time, clinical or pathological
 - cT and cNorpT and pN
 - Cannot mix and match c and p
- Exception
 - M designation can be either c or p
 - Based on how the metastases are determined: physical exam and imaging, or biopsy/surgery
- Examples
 - cT1 cN2 pM1 clinical stage IV
 - pT3 pN1 cM0 pathological stage II

Post Therapy/ Postneoadjuvant Therapy Classification

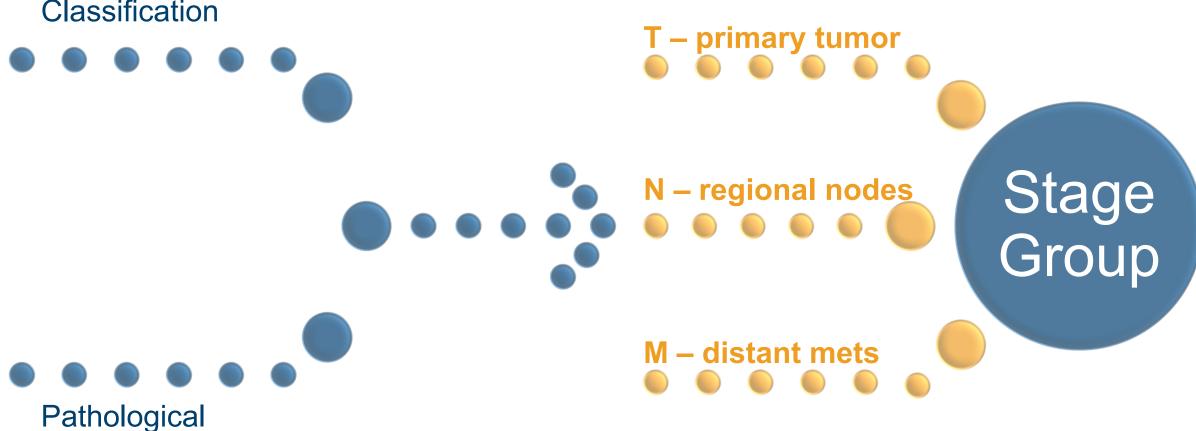
- yc
- Posttherapy clinical stage assigned after systemic and/or radiation therapy
- yp
- Posttherapy pathological stage assigned after surgical resection following the neoadjuvant (systemic and/or radiation) therapy
- yp stage
 - Utilized in conjunction with clinical stage
 - Assess response to neoadjuvant therapy

Retreatment Classification

- Retreatment classification based on
 - Recurrence information after disease-free interval
- Retreatment stage
 - Used to select appropriate further treatment
- Biopsy confirmation
 - Important if clinically feasible
- rT2 rN1 rM1, Retreatment Stage IV

Autopsy Classification

- Autopsy classification based on
 - Postmortem examination
 - Cancer was not evident prior to death
 - Includes all clinical and pathological information obtained at time of death and autopsy
- aT3 aN1 aM0 Autopsy Stage III



Categories- T, N, M

Classification

T category

- Designates size and invasiveness of primary tumor
- Numerical value increases with size and invasiveness
- Categories range from 0 4
- For example
 - Small lesion confined to the organ T1
 - Larger size or deeper extension into adjacent structures T2
 - Larger size or extension confined to the region T3
 - Massive lesion or directly invades another organ T4

T Examples

- Breast
 - pT1a Tumor >1mm but <5mm in greatest dimension
- Lung
 - pT2a Tumor >3cm by < 4cm in greatest dimension
- Colon
 - pT3 Tumor invades through muscularis propria into pericolorectal tissues
- Prostate
 - cT2a Tumor involves one-half of one side or less

T Examples

- Breast
 - pT3 Tumor >50mm in greatest dimension
- Lung
 - cT2b Tumor >4cm but < 5 cm in greatest dimension
- Colon
 - pT4a Tumor invades through the visceral peritoneum
- Prostate
 - cT4 Tumor fixed or invades adjacent structures other than seminal vesicles

N category

- Designates presence or absence of regional node involvement
- Numerical value based on number or location or nodes
- Increasing numerical value based on size, fixation, capsular invasion, or multiple node involvement
- Categories range from 0 3

N – Isolated Tumor Cells

- Isolated tumor cells (ITC) are single tumor cells or small clusters of cells not more than 0.2 mm in greatest extent that can be detected by routine H and E stains or immunohistochemistry
- ITCs do not typically show evidence of metastatic activity (e.g., proliferation or stromal reaction)
- Considered N0 negative lymph nodes for most sites
- N0(i+)

N – Sentinel Lymph Node

- Sentinel lymph node is first lymph node to receive lymphatic drainage from a primary tumor
- If it contains metastatic tumor this indicates that other lymph nodes may contain tumor
- If it does not contain metastatic tumor, other lymph nodes are not likely to contain tumor
- May be more than one sentinel lymph node

N Examples

- Breast
 - pN1a Mets in 1-3 axillary nodes, at least one >2.0mm
- Lung
 - pN1 Mets in ipsilateral hilar nodes
- Colon
 - pN0 No regional node metastasis
- Prostate
 - pN0 No regional node metastasis

N Examples

- Breast
 - pN3a Mets in 10 axillary nodes, at least one >2.0mm
- Lung
 - cN3 Mets in contralateral hilar and mediastinal nodes
- Colon
 - pN2b Seven or more regional lymph nodes positive
- Prostate
 - cN0 No regional node metastasis

M category

- Identifies presence or absence of distant metastases
- Including lymph nodes that are not regional
- Categories range from 0 1
- Isolated tumor cells in metastatic sites
 - Circulating tumor cells are found in blood (CTCs)
 - Disseminated tumor cells are found in bone marrow or other structures (DTCs)
 - Considered M0 similar to the concept of isolated tumor cells in lymph nodes, M0(i+)

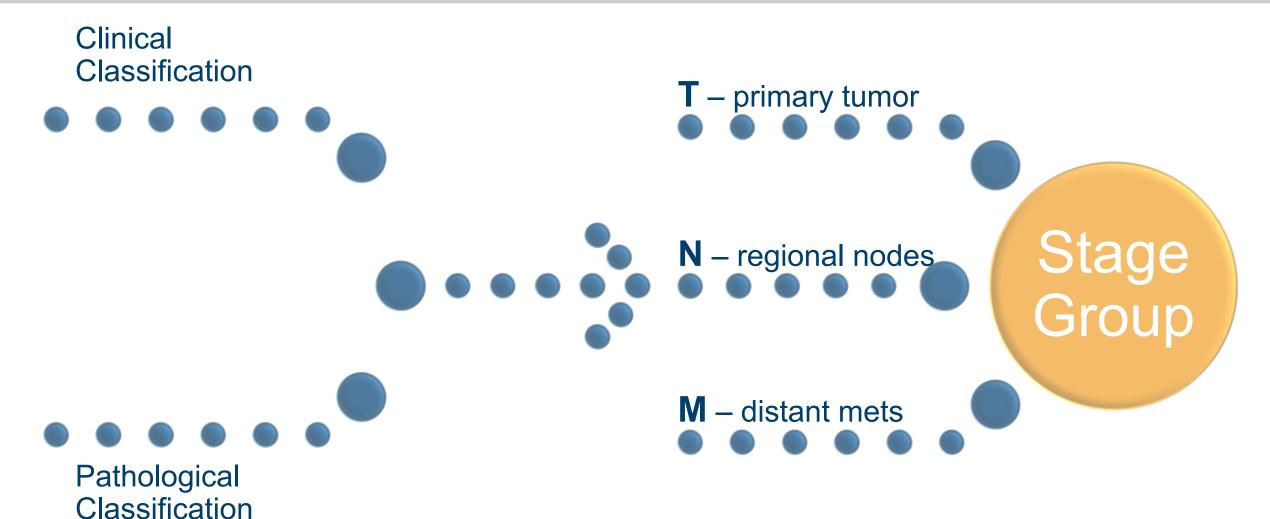
M Examples

- Breast
 - cM0(i+) No distant metastasis but microscopically detected tumor cells in circulating blood
- Lung
 - cM0 No distant metastasis
- Colon
 - cM0 No distant metastasis
- Prostate
 - cM0 No distant metastasis

M Examples

- Breast
 - cM0 No distant metastasis
- Lung
 - cM0 No distant metastasis
- Colon
 - pM1a Metastasis confined to one organ or site (liver), without peritoneal metastasis
- Prostate
 - cM0 No distant metastasis

Combinations of T, N, M



- Physician chooses T, N, and M that best describes the patient's cancer
- Many possible combinations of T, N, M
 - For example:
 - T1 N0 M0
 - T2 N1 M0
 - T4 N2 M1

Stage Group

Stage

 The combinations of T, N, and M are put into what is called a stage group, or simply, stage

Stage

- There are many possible combinations of the numbered categories for T, N, and M
- Organizes combinations into four or five main stages
- Allows for easier comparison of cases

Stage

- Stage is assigned a Roman numeral (0, I, II, III, IV)
 - Higher numbers indicate more extensive disease
 - Stage 0 is minimal involvement, usually carcinoma in-situ
 - Stage I is minimal disease
 - Stage IV is greatest tumor involvement or distant metastasis
 - Some stages have subdivisions
 - Listed as IIA, IIB
 - · Based on survival rates

Prognostic Factors

- Prognostic factors include anatomic and non-anatomic characteristics about a case
- Prognostic factors may
 - Play a role in describing the disease and
 - May be a part in how a stage group is assigned
- Prognostic factors
 - Personalize the information for that patient
 - Provide information for individualized or personalized prognosis

Prognostic Factors

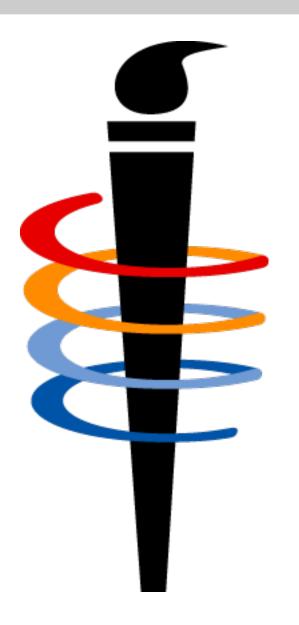
- Required for staging in various chapters
 - Grade
 - Tumor location
 - Mitotic rate
 - PSA (prostatic specific antigen)
 - Serum tumor markers for testis
 - HER2, ER, PR for Breast
- Relevant for clinical care
 - Many other factors are important to collect
 - Affect patient care or prognosis, but not used in staging

Prognostic Stage Group

- Prognostic Stage Groups
 - New term for stage
 - Signifies inclusion of prognostic factors to assign group

Stage Examples

- Breast
 - pT1a pN1a cM0(i+) G2 HER2- ER+ PR+ Pathological stage IA
- Lung
 - pT2a pN1 cM0 Pathological stage IIB
- Colon
 - pT3 pN0 cM0 Pathological stage IIA
- Prostate
 - pT2 pN0 cM0 PSA<20 Grade Group 2 Pathological stage IIB



Stage Examples

- Breast
 - pT3 pN3a cM0 G2 HER2- ER+ PR+ Pathological stage IIIA
- Lung
 - cT2b cN3 cM0 Clinical stage IIIB
- Colon
 - pT4a pN2b pM1a Pathological stage IVA
- Prostate
 - cT4 cN0 cM0 PSA>20 Grade 4 Clinical stage IIIB

Staging Guidelines

Staging Guidelines

- Rules for assigning stage ensure data consistency
- Stage applied to cancers that are similar
 - Specific criteria for different primary sites
 - Some specific criteria are based on histology
 - Some specific criteria are based on both site and histology
- Accurate and complete assessment necessary
 - Important to seek further information if staging documentation is unclear

Staging Guidelines

- A few cases are unstageable
 - Unknown stage if unable to identify extent of disease
 - Site or histology do not meet criteria for staging
 - No system for rare sites with not enough cases to establish validated criteria
- Mandatory to stage uniformly using the same staging system
 - In order to compare data or results

Summary

Summary

- Stage allows for clear communication between multidisciplinary physicians involved in cancer care
- Many patients understand broad concept of stage
 - Stage used in physician discussions with the patient
- Patient's treatment based on stage
 - Many national treatment guidelines available
- Prognosis estimated by stage and other factors
 - Patients want to know their prognosis

Summary

- Uses of stage
 - Monitor patient care and outcomes
 - Clinical trials, research studies, data analysis
 - Monitor regional/national treatment patterns and outcomes

- Survival data by stage monitored over the years
 - Influences subsequent editions/versions of AJCC Cancer Staging Manual/System

Resources

- AJCC Website
 - https://cancerstaging.org
 and
 - https://www.facs.org/quality-programs/cancer/ajcc
- Staging Moments case-based scenarios, clarify finer points of staging
 - https://www.facs.org/quality-programs/cancer/ajcc/staging-education/moments
- YouTube AJCCancer Channel
 - http://www.youtube.com/user/AJCCancer

Developed through generous support from the American Cancer Society.

Thank You

